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HIERARCICAL WAVELET REPRESENTATIONS
OF SHIP RADAR RETURNS

1. INTRODUCTION

High-resolution ship radar returns contain in their structure substantial information about
the target that can be used to better identify complex targets consisting of many scatterers. This
applies to many forms of radar signatures, including the amplitude of pulsed radar (PR) returns,
the phase of pulsed radar returns, Doppler radars (DR), synthetic aperture radar (SAR) returns,
inverse synthetic aperture radar (ISAR) returns, and millimeter-wave (MM-wave) radar returns.
With the increasing resolution of modern radars it is at least theoretically possible to store many
of the possible returns (i.e., returns organized according to aspect, elevation, and pulsewidth) of
a complex target and use them in the field for target identification. This is true for naval targets
(e.g., ships and submarines) in particular. The advantage of the increasing radar resolution is
the availability of more detailed information, and ultimately of specific features, characteristic of
the radar return from a specific ship. The disadvantage is that these very detailed characteristics
require an ever-increasing amount of computer memory for storage. The latter not only results in
unfeasible memory requirements but it also slows down the search time in real field operations. It
is therefore important to develop extremely efficient ways of compressing the representations of
high-resolution data returns from real ships, and to design efficient coding schemes that operate
in a hierarchical manner on the compressed representations to recover the ship identity. It is our
contention that multiresolution representations of the radar data, followed by properly designed
hierarchical clustering, are key means of achieving both objectives.

Wavelet theory [1]-[9] offers an attractive means of developing such multiresolution repre-
sentations. For instance, wavelet theory was recently applied to the problem of compressing
speech [10] and image signals [11], with very promising results. This success can be roughly ex-
plained by the fundamental property of wavelet representations of such signals (i.e., speech and
image) to uncover the superposition of these signals in terms of different structures occurring on
different time scales at different times (or on spatial scales at different locations). Wavelet rep-
resentations efficiently separate and sort the constituent structures of a complex signal. Wavelet
analysis consists of a versatile collection of tools for the analysis and manipulation of signals
such as sound and images [2], [8], [10], [11], [12]. Software packages have been developed recently
[12] that provide the user with a collection of standard libraries of waveforms that can be chosen
to fit specific classes of signals. These libraries can be further equipped with fast numerical
algorithms, enabling real-time implementation of a variety of signal processing tasks such as
data compression, extraction of parameters for recognition and diagnostics, and transformation
and manipulation of the underlying signals. Musical signals offer the best understood example.
Indeed, a musical note can be described by four basic parameters: intensity (or amplitude), fre-
quency, time duration, and time position. Wavelet packets are indexed by the same parameters,
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2 Baras and Wolk

plus others corresponding to choice of library (we can think of a library as a musical instrument,
i.e,. the recipe used to generate all the waveforms, "notes," in the library). Sound signal analysis
compares a sound with all elements of a given library, picks up large correlations (or notes which
are closest to segments of the signal), and uses these to rebuild the signal with a minimal number
of waveforms. The result provides an economical transcription, which if ordered by decreasing
intensity, sorts the main features in order of importance.

This report describes our recent efforts to extend these results to cover representations of
high-resolution radar returns from ships. Although we anticipate that such extensions are possi-
ble for all types of radar returns described at the beginning of this section, we focus our efforts on
high range-resolution radar returns. This is accomplished by developing hierarchical clustering
schemes using wavelet representations that are motivated from the physics of radar scattering,
in the same way that wavelet analysis of sound is motivated by the physics of sound and speech
signal generation. Indeed, the operation and mathematics of pulsed radar fit nicely with the
mathematics of wavelets as we demonstrate here. In addition, we use sophisticated versions
of Vector Quantization (VQ) [13] to further compress and cluster the wavelet representations
of the radar signals, in a way that permits hierarchical search across resolutions and realizes a
progressive scheme for identification of the ship (target).

2. HIGH RANGE-RESOLUTION RADAR RETURNS

High range-resolution radar returns can be described as complex valued signals of finite dura-
tion. The time duration of each return is controlled by a range gate that is assumed here to span
the range extent of a distributed target such as a ship. We can represent these complex signals as
two-dimensional, real-valued signals by using either of two commonly found representations: (a)
amplitude-phase (A(r), D(r)), or (b) in-phase and quadrature components ((r), Q(r)), where
r represents the time delay (or range) variable within the pulse. To completely characterize a
complex target, one can store the whole set of these two-dimensional functions (pulses) for all
possible values of radar pulsewidth 6 (i.e., different resolution), aspect a, and elevation c. Even
if one quantizes the three-dimensional space of 8, a, and E, the required storage is enormous and
impractical for real applications. Our efforts to date have concentrated on amplitude represen-
tations only (i.e., one-dimensional signals). We shall treat the full two-dimensional problem
(i.e., amplitude-phase representations) in future research.

Given the amplitude of a high range-resolution radar return, several characteristics of the
scatterer distribution of the target can be revealed. Figure 1 shows a typical pulse return from
a synthetic radar return model from a complex naval target. Several prominent local maxima of
the amplitude return are evident. They correspond to dominant scatterers, or groups of small
coherently additive dominant scatterers. Typical examples of dominant scatterers include flat
plates, trihedrals, and dihedrals. Since in a typical ship we can have thousands of scatterers, un-
derstanding dominant scatterers and reduction of detailed scattering models plays a significant
role in our studies. We have substantial past experience in such issues as we have been studying
modeling of scattering returns from complex targets for the last 15 years at the Tactical Elec-
tronic Warfare Division (TEWD) of the Naval Research Laboratory (NRL). We have developed,
for instance, reduced scatterer ship models based on the physical principles of high-resolution
radar scattering.

Varying the radar pulsewidth 6 changes the resolution of the returned pulse, in the sense
that more (narrow pulse) or less (wide pulse) details can be distinguished. Varying the view-
point (i.e., the aspect, elevation (ce, E) pair) changes the shape of the returned pulse because
dominant scatterers typically have highly directive returns (in space). Therefore, understanding
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Fig. 1 - Typical amplitude of a ship radar pulse return

the viewpoint invariance of dominant scatterers also plays a fundamental role in our studies. A
related point concerns the variation of the radar return due to relative motion between the target
(ship) and the radar. Since the target return is in reality the coherent sum of the returns from
thousands of scatterers, relative motion (random or deterministic) introduces large variations
in the pulse-to-pulse amplitude returns. Successful methods of providing effective compression
of radar returns also must address the substantial variability of the returns. It is clear that
successful treatment of this variability is directly related to the viewpoint invariance of features
in the return.

The fact that the radar return of a complex target is a rapidly fluctuating function of
viewpoint should not be construed as an impenetrable barrier either to a model data reduction or
to an efficient and hierarchical organization of a ship radar return database. It is well known that
this behavior of the return from complex targets is principally due to the rapid phase variations
that occur as scattering returns from individual scatterers combine. Our earlier studies on naval
targets have demonstrated that the radar return from ships is primarily due to a small number
of scatterers that have relatively broader (in aspect and elevation) reflectivity distributions than
those caused by the small scale rapid oscillations due to rapid phase variations. These rapid
phase variations are partly due to the inability of a radar sensor to determine accurately and in a

stable manner phase centers for extended scatterers, and partly due to the ever-existing relative
motion (even small) between the radar sensor and the target scatterers. The underlying broader
returns from a small set of significant (or persistent) scatterers manifests the significance of (a)
recovering this "slower variation" of the radar return as a function of viewpoint and (b) using
it for recognition. The "slower variation" will describe the more salient features of the target
signature.

As a consequence, some sort of averaging (or clustering) is needed to represent the more
meaningful, slower variation of the radar return (or the radar cross section (RCS)) as aspect
and elevation are changing. Several ways exist to implement this smoothing, some based on
physical and some on mathematical arguments. For example, stationary phase approximation
[14] can be used to smooth out these rapid variations, by essentially aggregating the returns
from several scatterers. Other methods used in modeling and data representation for the RCS
of complex targets [14] describe the variation of some (empirical) statistic of the RCS fluctuations
as a function of aspect (or more generally of viewpoint as defined earlier). The preferred (due
to its robustness) statistic is the median of the RCS computed over a small rectangle (in aspect

Hierarchical Wavelet Representations of Ship Radar Returns 3
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and elevation coordinates) around the viewpoint [14]. Similarly, one can use the average or
the median of the return pulse over a small neighborhood of the viewpoint. Based on these
considerations, it is physically meaningful to cluster the radar returns from various viewpoints
into equivalence classes using a measure of similarity. The resulting quantization of the signal
space (i.e., of the radar returns) characterizes the limits of discriminating between returns from
different targets using information about the viewpoint; in essence, if we insist on extremely
fine quantization cells, we are modeling the radar sensor noise and not the underlying complex
target.

Such (aggregate or average) representations should be interpreted as a reduction in the
number of scatterers "visible" from that particular viewpoint. Indeed, since we can identify
scatterers with peaks in the amplitude of the RCS, any smoothing of the RCS fluctuations can
be interpreted as a reduction (or aggregation) in the number of scatterers. The RCS of complex
targets can be computed to a good approximation by considering a smaller set of dominant
scatterers. Our earlier studies at NRL have demonstrated that we can reduce the number
of scatterers needed for the accurate simulation of radar returns from ships by a factor of a
100 (e.g., from 65,000 to 800, or from 250,000 to 2,000). These dominant scatterers are not
always identifiable with concrete geometric structures on the ship. They can also represent the
aggregate return due to many smaller scatterers as well. The dominant scatterers are "visible"
from wider viewpoint regions than geometric scattering will dictate. One can think of such
models as synthetic aggregate models. However, the detailed characteristics of each ship were
preserved and extensive experimentations have supported and validated these ideas. These so
called "reduced profiles" can then be grouped into equivalence classes using appropriate distance
measures. Mathematically, this is the same as performing some form of "clustering" or "centroid
averaging" on these profiles of the returned radar pulses.

As we show in this report, this approach of clustering the radar returns can be performed
in an efficient and physically meaningful manner. It is important, however, to combine this
approach with a multiresolution representation of the radar pulse returns. Multiresolution rep-
resentations of a ship radar return can, of course, be obtained by illuminating the ship with
variable pulsewidth radar signals. In addition to providing information on the size and combi-
nation characteristics of different scatterers, such multiresolution representations of the return
offer a natural aggregation scheme that can help in the clustering process just described. What
is emerging from this combination is a powerful combination of multiresolution representations
with hierarchical clustering, which permits efficient storage and speedy recovery of the informa-
tion. In this approach, the clustering hierarchy is induced by the multiresolution representation.
This combination is the basis of the methodology we have developed.

3. MULTIRESOLUTION REPRESENTATIONS OF RADAR RETURNS

The data representing the amplitude radar returns of a complex target are the set {A(r), r E
[0, T]; (, c, e) E QE}, where T is the length of the range gate and QE is a discrete, finite
grid in [6min, 6max] X [0, 27r) x [0, 7r/2). Current representations of these sets use statistical or
ad hoc methods to reduce the amount of memory required for storing this set. However, such
methods as discrete cosine transform, subband decomposition, or Karhunen-Loeve transform
cannot reduce the total amount of bits needed by more than 10:1; and such compression rates
are not enough for the efficient storage of high-resolution radar returns. In addition, we need to
organize the data so as to achieve fast search times when using the database for classification
or discrimination purposes.

Baras and Wolk4



Hierarchical Wavelet Representations of Ship Radar Returns

Higher compression rates can only be achieved by developing coding techniques that are
adapted to the information content of the signals and to their physical nature. This requires the
organization of the radar return data in such a way as to represent and separate the important
features of the return. For the amplitude of ship radar pulse returns, this means the location of
the local maxima and their geometrical characteristics. In particular, we need ways to describe
how these local maxima coalesce as the radar pulsewidth 6 increases. This corresponds to changes
in the return pulse as the resolution varies and corresponds to the physical property of coherently
combining the returns from dominant scatterers as a function of range extent. Therefore, we
need coding schemes that efficiently preserve the most important discontinuities of the pulse in a
multiresolution scheme. These discontinuities, or more accurately, the high curvature points of
the return pulse, correspond to dominant scatterers (or groups of scatterers). The representation
must be such that at coarse resolution (i.e., large 6) the local maxima of the return correspond
to the larger structures of the ship, while at finer resolutions (i.e., small 6) the local maxima of
the return correspond to the finer structures of the ship. For one-dimensional signals, such as
the amplitude of radar pulse returns, these maxima and minima are really (trivial) edges. The
significance and completeness of multiedge representations of signals is well known in various
contexts. In images, the completeness of such multiscale representations using edges has been
conjectured [15]. In addition, we need to further compress these representations by taking into
account the variability of these scatterer combinations with the viewpoint (i.e., the aspect and
elevation angles).

Experimenting with variable pulsewidths to obtain a multiresolution representation of the
ship is not a very practical solution. One of the objectives of the work reported here is to show,
by experiments with synthetic data, that our methodology provides a substitute which involves
only processing the high-resolution radar returns. This result in itself is an important finding.

The radar return from a complex target, like a ship, in high range-resolution, can be repre-
sented as [16]

r = HIF * h, *p (1)

where r is the received complex pulse, h, the ship complex impulse response (representing the
reflectivity of the ship), HIF is the Intermediate Frequency (IF) impulse response, and p is the
complex envelope of the transmit pulse. Typically, the radar will use a matched filter in the
receiver, and we are interested in the variability of pulsewidth from a minimum of 10 ns. At a
bow-on aspect, the ship is approximately 300 ft long, resulting in a range extended pulse return
of approximately 600 ns plus a pulsewidth. To safely capture all ship pulses, we used a range
gate of 128, bins corresponding to a returned signal time duration of 1280 ns. At the finer
resolution of 10 ns, sampling at the corresponding rate produces 27 samples.

The NRL TEVVD digital simulation model is a flexible tool for experimentation, and it
has been used as the basic data generation source for the studies reported here. This model
has been validated against field returns and provides high-accuracy simulations. The digitally
simulated ship model consists of over 400 scatterers of a variety of types, including flat plates,
point scatterers, and dihedrals. These scatterers are distributed in both range and space in
accordance with their actual locations on a ship. To each of these scatterers we associate an
amplitude and a phase due to its physical configuration, and an amplitude and a phase due
to its location in space relative to the radar. As a result, the ship impulse response hs can be
represented as

h,(t) = EAiei4 iei7'fAi(1 + ri)b(t - Ai) (2)
i
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where Ai is the amplitude of the return from the ith scatterer, i is the phase of the return from
the ith scatterer, f is the carrier frequency, and Ai is the distance of the ith scatterer from a
reference point; we have chosen t to represent range delay as usual in Eq. (2). The complex
multipath factor ri accounts for the signal return path that is reflected off the water's surface.
Thus, multipath reflections are also included in Eq. (2).

This representation is an idealization. In reality, scatterers move as the ship moves in
response to sea waves. This relative motion of the scatterers affects the signal return due to a
number of phenomena, including: (1) phase changes due to changes in geometry, (2) amplitude
and phase changes due to changes in the multipath contributions, and (3) amplitude and phase
changes due to blockages. Since the ship motion is stochastically driven, and the multipath
reflections are stochastic, the impulse response Eq. (2) is itself stochastic. The common model
used for the general impulse response of a distributed target is that of a complex Gaussian
random process [14]. The latter model can be useful in further analytical investigations of the
results presented here. However, the digital simulation model used accurately captures this
randomness with the careful selection of the scatterers, their location, type, and size.

We also maintain pulse-to-pulse independence by selecting the radar pulse repetition interval
(PRI) to be long enough with respect to the correlation time of an individual scatterer. Since
we are interested in characterizations on a per pulse basis, we designed the experiments so as
to ensure that pulses are well spread with respect to a ship roll period. In our experiments, we
have used PRIs with values in the interval 80 ms to 1 s.

Figure 2 shows a typical result of a ship return with transmit pulse widths of 10 ns, 20 ns,
40 ns, and 80 ns. In the three-dimensional representation shown, we see clearly the coalescence
of the ship scatterers as we move from fine to coarse pulsewidths. This is also demonstrated
in Fig. 3, showing the pulse returns corresponding to the four different pulsewidths. In Fig. 3
we also have traced, by connecting the major peaks of each return, the coalescence of the ship
scatterers as we move from fine to coarse pulsewidths. We have performed many simulation
experiments with the same typical and generic results as those represented in Figs. 2 and 3.

u

I-

0.~ ~~~~~~~~~~~~~~~~0n
40ns

0 ns

Fig. 2 - Typical variation of ship radar return as a function of pulsewidth
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In Fig. 4 we have extracted the location of the maxima of the ship radar return as a
function of pulsewidth or, equivalently, resolution. We see that by varying the pulsewidth we
do not quite get uniform localization of the major scattering centers with respect to resolution.
Uniform localization corresponds to vertical lines. We call diagrams such as the one depicted
in Fig. 4 scale space diagrams, extending a notion originally introduced by Witkin in computer
vision [17]. Our experiments to date regarding uniform localization of radar features are not
complete and this issue will be revisited elsewhere, using a substantially larger and statistical
experimental database. On the other hand, varying the pulsewidth of the transmitted radar pulse
changes the way individual scatterers combine coherently. Since we are recording the amplitude
of the return, the whole operation is, in addition, quite nonlinear. The overall combination and
aggregation of individual scatterers' returns is a very complex operation and we do not have
any strong physical basis to expect uniform localization of scattering centers with respect to
resolution variations induced by different pulsewidths. However, it is clear that such scale space
diagrams provide a "fingerprint" of the ship, since they indicate how scatterers combine; this is
a property of the ship geometry when all other scattering parameters are kept constant.

100

90

Coarse 80
70

-60

50

~40

30

20-

Fine 0 

200 400 600 800 1000 1200
Range Delay (s)

Fig. 4 - Typical scale space diagram
for radar pulse returns from a ship

As mentioned earlier, one of our objectives is to show that by combining wavelet represen-
tations with clustering algorithms we obtain similar representations of the ship radar return;
recapturing, in essence, the effects of variable pulsewidth data as described here.

4. WAVELET REPRESENTATION OF RADAR RETURNS

Wavelet and wavelet packets and the associated representations have recently attracted great
interest as compact and efficient representations of signals in many scales [1]-[9]. Wavelets
are extensions of the more well-known Gabor transforms and the resulting Gabor pyramid
representations of images [4]. Like the Fourier transform, wavelets decompose functions into
coefficients assigned to fundamental building blocks, from which the original function can be
reconstructed. But whereas Fourier analysis builds everything out of sines and cosines, wavelet
theory relies on translations and dilations of a suitably chosen "mother wavelet." Most often,
the mother wavelet is a well-localized "blip." The rest of the building blocks are formed by

8 Baras and Work
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translating the mother wavelet by unit steps and by contracting or dilating by factors of 2. This
gives a two-parameter transform: one for the distance translated and one for the power of 2.
This approach means that wavelet theory can "zoom in" on details of a function in a way that
Fourier analysis cannot. Because the sine and cosine functions extend all along the real line,
Fourier coefficients contain only "global," not local, information about a function. In particular,
transient behavior is difficult to see in the Fourier transform. But wavelets are custom-made
for analysis of this kind; a blip in the function shows up as a blip in the wavelet transform.
Thus wavelets are more akin to local representations, albeit simultaneously at different scales.
Consequently they are more robust to noise because minor disruptions (noise) remain localized,
which makes them easier to edit (filter) out. These properties justify the underlying hypothesis
of this study: wavelet representations are particularly suited for radar returns. We give some
additional reasons later in this section.

Since we are primarily interested in one-dimensional signals (i.e., amplitude representations
of time pulses), we describe the basic facts for one-dimensional signals here.

4.1 Wavelet Representations

We follow Ref. [9] in this brief summary on wavelet fundamentals. Wavelets are functions
generated from one single function b by dilations and translations

a'b(t) = al/ 2 I,2(t ab (3)

The mother wavelet b has to satisfy (roughly) f dxb(x) = 0, which implies at least some
oscillations. Thus, high frequency wavelets correspond to a < 1 or narrow width, while low
frequency wavelets have a > 1 or wider width. Wavelet transforms [1, 2] represent any arbitrary
function f as a superposition of elementary blocks. Any such superposition decomposes f into
different scale levels, where each level is then further decomposed with a resolution adapted to
the level. One way to achieve such a decomposition is to write f as an integral over a and b of
1pawb with appropriate weighting coefficients [1, 9]. For digital computations, we have to write f
as a discrete superposition by introducing the discretization, a = a', b = nboaW, with m, n Z,
and a > 1, bo > 0 fixed. The wavelet decomposition is then

f = EZm,n(>Xm,n (4)

with g)=m(t) = 0t) = am/ 2 (a-mt - nbo). For ao = 2,b0 = 1, which is the most
widely used selection, there exist very special choices of such that the 4Orm,n constitute an
orthonormal basis, so that

Cmn =< 'Om,n, f >= J *,m,n(x)f (x)dx (5)

in this case. Such bases were constructed by Daubechies [1] and Meyer [3]. These concepts were
synthesized to a multiresolution analysis tool for signals by Mallat [2], which gives rise to fast
computation algorithms.

A multiresolution analysis [2] has two functions: the mother wavelet 4 and a scaling func-
tion 0. One also introduces dilated and translated versions of the scaling function, bm,n(x) =

2 -m/20(2-mx - n). For fixed m, the q0m,n are orthonormal. Usually Vm denotes the space
spanned by the qOmm. The spaces Vm describe successive approximation spaces, ... V2 C V1 C
VO C V- 1 C V-2..., each with resolution 2m. This sequence of successive approximation spaces

Hierarchical Wavelet Representations of Ship Radar Returns 9
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Vm constitutes a multiresolution analysis [2, 9]. The multiresolution aspect is a consequence of
the requirement: f Vm f( 2m-) Vo. For each m, the ?Im,n span a space Wm which
is exactly the orthogonal complement in Vmil of Vm; therefore, the coefficients < Om,,, f >
describe the information lost when going from an approximation of f with resolution 2 m-1 to
the coarser approximation with resolution 2 m. The spaces Wm inherit the scaling property from
the Vm: f E Wm -== f(2m.) E Wo. The scaling function , which is in Vo can be expanded in
V-1 resulting in this dilation equation

q5 = E3 hnvk-iZn, (6)
n

while the mother wavelet is given from the scaling function via

O = Eg9¢q-,n, (7)
n

where

hn =< -1,nq 5 >= 21/ 2 f q(2x - n)q(x) dx (8)
gn -< ¢-0l,n, 0 >= (-l)nh-n+l-

The sequences {hn, n integer} and {gn, n integer} can be thought of as the impulse responses
of two filters, known as conjugate mirror filters. Based on these results, a useful and constructive
starting point for multiresolution analysis is the choice of a scaling function 0 using Eq. (6) [9,
pp. 140-145].

These concepts result into the following fast algorithm for the computation of the Cn,f(f)

[2]:

Cm,n(f) = Ek gk-2nam-1,k(f)
(9)am n(f) = Ek hk-2nam-1,k(f)

where a..,n(f) =< m-i,n, f > are coefficients characterizing the projection of f onto Vm.
The first line of Eq. (9), which is a consequence of Eq. (7), shows that we can compute the
cm,, by means of the same operation (convolution with g, decimation by factor of 2) from the
am,n, if the latter were known. On the other hand, the second line of Eq. (9), which is a
consequence of the dilation equation (Eq. (6)), shows that the am,n can indeed be computed
by means of the same operation (convolution with h, decimation by factor of 2) from the cmn.
The procedure is now clear: starting from < ,n, f > we compute the < lan, f > by the first
line of Eq. (9), and the < 1,n from the second line of Eq. (9). We then apply Eq. (9) again to
compute the < 2,n, f > < 2,n, f > from the < 1,n, f >, etc.. This fast recursive algorithm
computes at each level m not only the wavelet coefficients Cmn, but also the amn, which are
useful for the computation of the next level wavelet coefficients. The whole process can also
be viewed as the computation of successively coarser approximations of f, together with the
"difference in information" between every two successive levels. Thus we start with a fine scale
approximation of f, Sf, which is the projection of f onto Vo. Then, since Vo = Vi ff W1, we
write Sof = S1 f + W1 f, where Slf as the projection of S~f (and therefore of f) onto V is

10 Baras and Wolk
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the next coarser approximation of f, while W'f as the projection of Sof on W1 represents the
"lost information" in the transition S~f -- Slf. This picture repeats for each scale m. In each
of these spaces Vm, Wm we have the orthonormal bases (q>m,7) (4 mn), n integer respectively,
and therefore

So= ao,nOo,n, Slf = >a1,nk1,n, Wf = >Cmn4 1n. (10)
n n n

Equation (9) gives the evolution of the coefficients of the orthogonal bases transformations from
Vm to Vm+l. If we let Lh and Lg represent the linear transformations corresponding to Eq. (9),
these computations are represented schematically in Fig. 5, where cm is the vector of coefficients
{cmn, n integer} and am is the vector of coefficients {amn, n integer}.

ao Lh al Lh a 2 - a3

Lg Lg Lg

C1 C2 c3

Fig. 5 - Schematic representation of the
multiresolution algorithm, analysis part

In practice, we stop after a finite number of levels 1, 2, * * , J. At this stage we have replaced
the information at the fine scale a0 with the information in c,c 2 , . ,c3 and a final coarse
scale coefficient vector aJ. Equivalently we have replaced Sof with W 1f, W 2f, * * , WJf and
SJf. Because Eq. (9) is associated with orthonormal wavelet bases, the inverse transformation
is given by the adjoint matrices. Indeed

Sm-1f = Sm f + W"f = E am,nmn + E3 Cmnom,n (11)
n n

which results, in view of Eqs. (6-7) to

am-.,n(f) = C[hn-2kam,k(f) + gn-2kCm,k(f)]. (12)
k

If the function f is given in sampled form, then one can take these samples for the fine
resolution approximation coefficients aon, and Eqs. (9) and (12) describe the analysis and
synthesis steps of a subband filtering scheme with exact reconstruction, on these sampled values,
with low-pass filter h and high-pass filter g. In such a scheme, in the analysis step, the incoming
sequence ao is convolved with two different filters, one low-pass and one high-pass. The two
resulting sequences are then subsampled, i.e., only the even (or only the odd) entries are retained
since the other samples are redundant. In the synthesis step, we first interleave with zeros
the sequences resulting from the analysis part, and then convolve the resulting "upsampled"
sequences with the filters h and g, respectively, and adding the results, which gives Eq. (12).
Within a time reversal, the same filters are used for analysis and synthesis, thus the commonly
used term quadrature mirror filters.

Hierarchical Wavelet Representations of Ship Radar Returns 11
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Most of the orthonormal wavelet bases have infinitely supported ', corresponding to filters
h, g with infinitely many taps. The construction of Daubechies [1] gives 4' with finite support,
which corresponds to FIR filters h, g. The latter are preferred for applications and implementa-
tions. It then follows that such orthonormal bases [1] correspond to a subband filtering scheme
with exact reconstruction property, using the same FIR filters for reconstruction as for decom-
position. Subband filtering schemes with exact reconstruction have been studied extensively
[18]- [21].

The easiest way to ensure compact support for the wavelet 4' is to choose the scaling function
q with compact support. It then follows from Eq. (8) that h will be FIR, and so will be g.
Then 4 has compact support since from Eq. (7) it is the finite linear combination of compactly
supported functions. For compactly supported 0, the scaled filter transfer function (i = fI)

H(() = 2-1/2 E hne-ine (13)
n

which is 2r-periodic, becomes a trigonometric polynomial. Then orthonormality of the qOon
implies

JH(()12 + IH( + 7r) =1 (14)

It is often desirable to construct H so that 0 and 4' are reasonably regular (smooth). The
latter requirement implies that H must be of the form

H(s) (1 + ei )NL(4) (15)

where N > 1 and L is a trigonometric polynomial. There are many ways to construct such H
[9, chapters 67]. The only possible candidate for a scaling function is provided by

= (2ir) /2 I H(2-k~) (16)
k=1

which follows from q(Q) = H((/2)((/2) which in turn is Eqs. (6) in the Fourier domain. In
addition to Eqs. (14) and (15), H must satisfy H(0) = 1. Necessary and sufficient conditions
for H to satisfy the above conditions and generate orthonormal wavelet bases are given in [9,
Theorem 6.3.6].

Also, it is often desirable to construct compactly supported wavelets that have L vanishing
moments; i.e., f x14'(x) dx, = 0,2, .. -,L - 1. These are important because an orthonormal
basis of wavelets can consist of CL-1 wavelets only if the mother wavelet has N vanishing
moments. They allow efficient approximation by a small number of wavelet coefficients in Eq.
(4). The wavelets No' constructed in Ref. [9, Section 6.4] (where N is as in Eq. (15)), have
corresponding NH with 2N - 1 nonvanishing coefficients, have support width 2N - 1, have the
highest number of vanishing moments compatible with their support width, and belong (as do
the corresponding scaling functions NO) to CAN, where , - 0.2. If we base the construction of
wavelets with vanishing moments to the dilation equation (Eq. (6)), the condition of L vanishing
moments is equivalent with H, as given by Eq. (13), having a zero of order L at -7r. This is
the same as

>(-l)nnmhn = 0, m = 0,1, * * ,L - 1. (17)
n

12 Baras and Wolk
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We are interested in investigating such exact reconstruction schemes for high resolution

ship radar returns. In particular, we are interested in discovering mother wavelets and scal-
ing functions that are physically motivated, e.g., lead to representations where discontinuities
(corresponding to identifiable scatterers) are uniformly localized across resolution (pulsewidth).

Using biorthogonal bases (i.e., by relaxing the orthonormality requirement) it is possible
to construct examples where the mother wavelet has arbitrarily high regularity. In addition,
biorthogonal bases permit the construction of symmetric wavelets, which hold promise for the
uniform localization of the local maxima of one dimensional pulses across different resolutions
[20]. In such schemes, one decomposes f as before (i.e., by using Eq. (9)), but reconstruction
becomes (that is, Eq. (12) is replaced by)

am-ln() = >[hn-2kam,k(f) + gn-2kCm,k(f)], (18)
k

where the filters h, g are different from h, g. In order to have exact reconstruction we impose
the conditions:

jn = (-l)nh-n+l
gn = (-l)nh-n+l (19)

En hnhn+2k = 6 k,O

Here we have two pairs of filters, and, therefore, two pairs of scaling functions and mother
wavelets, , 4' and A, 4. The scaled filter transfer functions are given again by

H(() = 2-/2 >3 e H(() = 21/2 E hnezfl4, (20)
n n

and must satisfy H(0) = 1 = H(0). This amounts to normalizing the coefficients so that
En hn = = n hn. The Fourier transforms of and are given by

0( = (27r)1/2 k=1 H(2Ak)

= (27r)-/2 Hk=1fI(2k() (2)
which are well defined.

Then the following interpretation is valid for Eq. (18). The functions q and + satisfy the
dilation equations

5(x) = > hno(2x - n) and (x) = >3 h (2x - n). (22)
n n

It is easy to see that 0 and b are well-defined square integrable functions, compactly supported
if the filters h and h are FIR. Define also

6P(x) = Egn(2x - n) and (x) = >3§n0(2x - n). (23)
n n

Hierarchical Wavelet Representations of Ship Radar Returns 13
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Then the above subband filtering scheme, with different filter pairs in the analysis and the
synthesis steps, with exact reconstruction, corresponds to two dual wavelet bases, associated
with two different multiresolution ladders

.. V2 CV1 CVoC V- 1 V 2 ...
.. V2 CV 1 CVOC VlCV- 2 ... (24)

The wavelets {mn n integer} and {4 mn, n integer} span subspaces W,. Win, respectively,
which are complements to Vm, Vm but not orthogonal complements. Figure 6 shows the resulting
filter bank structure with the associated filters.

f f

Fig. 6 - Subband filter bank structure and the associated filter pairs

Again, one can construct compactly supported mother wavelets ' and 4 with varying degree
of regularity or vanishing moments [9, chapter 8], [20]. Biorthogonal bases of wavelets with
regularity have been recently constructed [9, 20, 21]. It was shown [20] that arbitrary high
regularity can be achieved for both 4' and 4, provided one chooses sufficiently long filters. Many
examples of biorthogonal wavelet bases with reasonably regular ' and can be constructed [9].
The regularity of 4 'm, which is linked to the number of zero moments of 4', is more important
than the regularity of 4'mn Many examples are possible [9, 20], including spline filters, and
filters close to orthonormal wavelet filters. Reference 9 presents an example of scaling functions
0, and mother wavelets , .

4.2 Application to Synthetic Ship Radar Data

We generated a radar return database using the NRL TEWD ship radar return simulator.
One of our objectives is to organize such databases efficiently so as to minimize the memory
required for storage, and to minimize the search time for classification. Both have significant
applications in surveillance, tracking, Automatic Target Recognition, and battle management.
It is important to analyze methods with respect to scale-up in the size of the database. In
generating the synthetic data, we kept the radar fixed and turned the ship. Table 1 gives the
parameters in the synthetic data.

In creating the database, we varied the aspect angle from 0 to 3600 in increments of 0.05°.
We shall refer to this data set as S-. This allowed for large variation in the number and
appearance of dominant scatterers. The database contained 7,200 pulses at fine resolution,
which corresponded for the sampled data to vectors of length 2. We did not change the range
gate and, therefore, each pulse in the database has the same time duration. We denote by [0, T]

14 Baras and Wolk
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Table 1 - Synthetic Data Parameters

Radar Frequency 16.25 GHz

Elevation Angle 0.0230

Sea State 3

Pulsewidth 10 ns

Pulse Repetition Interval 80 ms to 1 s

this common time length of each pulse. In our experiments we took T = 1280 ns. We also
created an additional database with 1,000 pulses by restricting the data to a finite set of aspect
angles 0° to 360° in increments of 45°. We shall refer to this data set as SE. We worked only with
discrete time data, and each pulse was represented initially as a vector consisting of 27 = 128
samples, reflecting a sampling interval of 10 ns. We shall denote by f the generic sampled pulse
in the database. We shall use subindices, such as fj to denote a specific pulse. The sample
values will be denoted by f(n), where n E {1, 2,... ,27}. Since we will consider subsampled
versions of the pulses as well as of various derived signals in the multiresolution representations,
we will use index sets for the samples, which are subsets of {1, 2, ... , 27} as well.

An important question that arose during this study was the formalism for wavelet represen-
tations for signals on an interval. As already indicated, all signals in the database are confined
on the interval [0, T]. Among the options available for wavelet bases on an interval are the
following [9]:

(a) Use standard wavelets by extending each function to be zero outside the interval of
interest;

(b) Use a periodic extension of each signal;

(c) Use wavelets with compact support included in the interval of interest an supplement
them with specially adapted functions at the edges [22, 23];

(d) Use an extension of each signal by reflection and use biorthogonal wavelet bases with
symmetric scaling functions 0 and 0 around the middle of the interval of interest.

The performance of each method and the associated computational complexity are different.
After preliminary experimentation with our data we have used primarily method (a). Methods
(b) and (d) work very well with the type of signals we had since the ship radar pulses are zero
towards both ends of the interval of interest (see Figs. 1 and 4). This makes the results based
on periodic extensions more accurate and actually very similar to results based on extension by
reflection. Due to this characteristic of our data, we found method (a) the easiest to implement
and the results were as accurate as any other method. This implementation was further facili-
tated by the fact that we used FIR filters, typically with small number of taps. As a consequence
of these observations, we have primarily used extension by zeros.

From the given collection of sampled pulses, we construct several new signals and spaces
following the results on wavelets summarized in Section 4.1. We used compactly supported
wavelets generated with a scaling function qb with compact support satisfying a dilation equation
like Eq. (6), with only finitely nonzero coefficients

Hierarchical Wavelet Representations of Ship Radar Returns 1-5
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K
0S(t) = Eck(2t - k). (25)

k=0

Here K and {Ck, k = 0,2, * **,K} are parameters to be chosen. Note that the Ck are related to
the hk of Eq. (6) via ck = vfhk. The corresponding compactly supported wavelet is given by
the analog of Eq. (7)

K
+(t) = >3(_l)kC-k+10(2t - k). (26)

k=o

Since Zk hk = V\, the Ck satisfy the normalization constraint

K
E Ck = 2. (27)
k=O

Finally, to ensure that the translates of q5(t) are orthogonal, we require that

K
E CkCk+2 = 26,1 (28)
k=o

where 6o,1 is the Kronecker delta function. The condition (Eq. (28)) is equivalent to the "power
complimentary condition" Eq. (14), where H(() is the low-pass filter transfer function given in
Eq. (13), and is also equal to

1K
H(,) E cke k, (29)

k=

which is also known as the symbol of the dilation equation (Eq. (25)).

Let S denote the set of discretized radar pulses. The fine resolution data will be denoted
by SOf (n), n E I0, where 10 C {1, 2,..., 2 7}, is the index set of the fine resolution data. We
could subsample the given data to economize computations but in our experiments we took
IP to be the full set {1, 2, .. ., 27}. We shall let N = 2J denote the number of samples in the
fine resolution data, where J is the maximum possible number of scales that we can consider.
In practice, scales up to J* where J* < J are considered. We denote by ATr the sampling
interval for the fine resolution; it can be also thought of as the resolution of the fine resolution
data. Respectively for each resolution m we denote by Im the subset of I where sampled values
of the mth resolution pulse representation S'f are computed. I is obtained from Im-1 by
decimation; resulting in our case in [1ml = 2 7-m. To use the notation and constructs of Section
4.1, we identify a0 with the vector of sampled data Sof. Then we use the pyramid scheme Eq.
(9) to recursively compute the successive approximations Smf to the pulse f at various scales
m and the residual pulses W m f, following the notation of Section 4.1. All signals are digitized
and we identify the vector am with S m f and the vector cm with W m f. As we proceed with this

16 Baras and Wo&
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analysis step from scale m to the coarser scale m + 1, the space of signals becomes smaller (see
Eq. (24), and the length of vectors is halved (see the decimating blocks in Fig. 6). Thus, at scale
1 we have N/2 = 2J-1 samples and resolution ZAr1 = 2A-rT. At scale m we have N/(2m) = 2 J-m
samples and resolution Arm = 2iA-r. Thus, the algorithm recursively splits the initial vector
a0 representing the sampled pulse Sof to its components cm at different scales indexed by
m representing the wavelet residuals Wmf. Thus, the tree multiresolution scheme of Fig. 5
replaces the information in each pulse f = SCf with the set {Wmf, m = 1,2, -- , J*, f}.
One can also think of W m f as representing the details of the pulse f in scale m.

The recursions of this decomposition, as described by Eq. (9) can be given in terms of matri-
ces Lh, L with coefficients completely determined by the coefficients k of the dilation equation
(Eq. (25)). Conversely, the reconstruction of f from the set {W m f, m = 1, 2, * , J*, SJ f}
proceeds as in Eq. (12), which uses the adjoint matrices L*, Lg. In this setting, the Discrete
Wavelet Transform is uniquely characterized by an orthogonal matrix Tw: RN - RN, where
N = 2J is the number of samples available from the signal. The orthogonal matrix Tw is uniquely
determined by the coefficients ck involved in the recursion of the scaling function as described
in Eq. (25). It has been shown recently that all "valid" sequences {ck, k = 0, 1, * , K} are
parametrized by (K + 1)/2 - 1 "angle" parameters [24] in the range [0, 2r). This parametriza-
tion is useful in obtaining optimal or best wavelets for particular signals. The design of "best"
mother wavelets and scaling functions (orthogonal or biorthogonal) for ship radar returns is an
important problem in our program. It will be addressed in a future report.

Figures 7, 8, and 9 show typical examples obtained from our experiments. As indicated
above, N = 128, and we used J = 3. This gives us four scales (including the given fine
scale) m = 0, 1, 2, 3, with vector lengths 128, 64, 32, and 16 and resolutions 10, 20, 40, and 80
ns, respectively. Figure 7 shows the multiresolution representation of a typical ship radar pulse
using the Haar wavelet, which corresponds to low-pass filter coefficients ho = 0, h = 0.5, h2 =

0.5, hk = 0 for k > 3}.

Figure 8 shows the multiresolution representation of a typical ship radar pulse using an
orthonormal wavelet, with highest number of vanishing moments [9, chapter 6], constructed
from NH with N = 6, which corresponds to the filter coefficients shown in Table 2.

Figure 9 shows the multiresolution representation of a typical ship radar pulse using the
biorthogonal symmetric wavelet, based on splines with less dissimilar lengths = 4 = k, k = 4
[11] which corresponds to the analysis filter coefficients hk and the and the synthesis filter
coefficients hk shown in Table 3.

From these figures, we see that the multiresolution representations are different depending
on the wavelet used. The differences are more pronounced at the coarser resolutions. "Best"
representations of the pulses at coarse resolutions are important for our scheme, since the re-
sulting hierarchical data representation uses increasingly finer resolution data for classification.
This scheme will work very well provided the initial coarse resolution clustering is not completely
wrong (see Section 6. for further details on this issue). These considerations motivate optimizing
the wavelet as discussed earlier. From these figures, we observe clearly that the peaks of the
radar pulse coalesce as we vary the resolution from fine to coarse, in a manner similar to the
one observed when we used variable pulsewidths of comparable resolution; c.f. Fig. 4). This is
not unexpected and justifies earlier statements regarding the suitability of wavelet analysis for

Hierarchical Wavelet Representations of Ship Radar Returns 17
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(a)
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1 200 -l:

(d)

Fig. 7 - Multiresolution representation of typical ship return pulse using Haar wavelets.
Resolutions are (a) 10, (b) 20, (c) 40, and (d) 80 ns.
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Fig. 8 - Multiresolution representation of typical ship return pulse using Daubechies wavelets
of orders. Resolutions are (a) 10, (b) 20, (c) 40, and (d) 80 ns.
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Fig. 9 - Multiresolution representation of typical ship return pulse using biorthogonal spline
symmetric wavelets. Resolutions are (a) 10, (b) 20, (c) 40, and (d) 80 ns.
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Table 2 - Filter Coefficients of
Daubechies [8] with N = 6

h= 0.111540743350 h6 = 0.097501605587

h= 0.494623890398 h7 = 0.027522865530

h2= 0.751133908021 h8 = -0.031582039318

h3 = 0.315250351709 h9 = 0.000553842201

h4 = -0.226264693965 h10 = 0.004777257511

h5 = -0.129766867567 h1 1 = -0.001077301085

hk = 0 for k> 12

Table 3 - Filter Coefficients of Biorthogonal
Symmetric Wavelet

ho = 0.788484 h0 = 0.852698
h1 = h = 0.418092 h1 = h-= 0.377402

h2 = h 2 = -0.040689 h2 = h-2= -0.110623

h3 = h3 = -0.064539 h3 = h-3 = -0.023849
hk = O for Ikl 4 h4 = h4 = 0.037828

hk = 0 for IkI 5

radar signals. The following argument is clearer in continuous time. From Eq. (1), the received
pulse r is represented as a convolution. Let us apply to r the wavelet decomposition described
in Section 4.1. Then

(30)r = Z c,,(r)+,. + Iajn(r)ojn
m<J,n n

where the second sum provides an approximation to r at the coarser resolution J. By applying
Eq. (1) to the last equation, we can see this coarser approximation is given by

Sjr = En < T, bJn > /5Jn
= En < HIF * hs * p, Jn > j,
= HIF * hs * En < A OJn > n
= HiIF *h,SsJp.

(31)

This means that within the approximations involved, the "smoothed" return at resolution J is
equivalent to the return due to a "smoothed" transmit pulse SJp at the same resolution. There-
fore, if we locate the maxima of the amplitude ISJrt, they should coincide with the maxima of
the amplitude of a return to a wider pulse SJp. This is the basic reason for the expected perfor-
mance of wavelet decompositions and representations in accurately describing multiresolution
radar returns, as if we varied the pulsewidth. This computation is very accurate if we perform
the wavelet decomposition Eq. (30) on the complex radar return. This will be addressed in
future research. For the purposes of this study we worked directly with the amplitude of the
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pulses, in which case the argument just given is only an approximation. However, it does provide
the physical justification for our methodology.

On a more fundamental basis, the fact that wavelets permit a time-frequency analysis is
important for radar signals, since the method described here can be applied equally well to
other types of radar signals, including ISAR, SAR, and frequency agile radar. Such applications
will also be the subject of future research.

5. HIERARCHICAL REPRESENTATION VIA TREE-STRUCTURED
VECTOR QUANTIZATION

We now turn to the principal problem addressed in our study: how to efficiently compress
radar pulse data so as to minimize memory requirements and minimize search recovery time.
We aimed at the development of a hierarchical, tree-structured representation, which could use
the multiresolution representations provided by wavelets. In developing the method described
here, we were inspired by the recent discoveries of certain deep relations between VQ [13] and
decision trees [25].

5.1 Vector Quantization as a Clustering Algorithm

The goal of vector quantization is multidimensional data compression with respect to a
fidelity criterion. A fundamental result of Shannon's rate-distortion theory is that a better
performance trade-off between the amount of compression and the amount of distortion of a
given set of source vectors can always be achieved by directly coding the vectors as opposed to
simply coding the scalar components. In its usual form, vector quantization is understood to
be generally concerned with reducing the memory requirements for data storage or reducing the
bandwidth of transmitted signals under a noise immunity constraint. Such is the case in speech
processing applications and image compression. In this form, the fidelity criterion, or distortion
measure, is a similarity measure between the original set of vector samples and the decoding of
their compressed versions. Another important measure is the rate of the code, which is used to
estimate the amount of compression achieved. However, by properly defining a rate-distortion
measure between the respective sample distributions one can reinterpret the VQ process in the
context of optimal decision theory. In fact, this flexibility in defining and interpreting rate and
distortion in Shannon's theory has recently lead to very beneficial cross-fertilization between
these two areas, in particular between tree-structured vector quantizers [13] and classification
(decision) trees [25]. This insightful viewpoint interprets the distortion-rate pair as a valuable
quantifier of overlearning.

The crucial element in efficient vector quantizer design is a distortion measure that has
the right properties. The most frequently used distortion measure in signal coding is the L2

distortion measure, whether it is computed directly on signal subblocks or transformations of
subblocks. However, in problems such as the one addressed here, the choice of the distortion
measure is critical, since it affects classification performance. Selection of distortion measures
in vector quantization is a difficult problem that has not been investigated appropriately.

An N-dimensional (memoryless) vector quantizer, which we will denote VQ for convenience,
consists of an encoder -y mapping an N-dimensional vector space X to a set of (channel) code
symbols F and a decoder 5 mapping these code symbols to a reproduction alphabet A. Sample
vectors in X are usually considered to arise from a random source. For a given code symbol
F E F, if we let (F) denote its length (in bits), then we can define the average rate R in bits
per vector of a given code y by R = E[(-y(X))] where the expectation arises from our chosen
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probabilistic model for the random vector X. The distortion between any input vector x E X and
its reproduction 6(7(x)) is modeled according to a cost assignment d(x, 6('y(x))), with which one
defines the average distortion of a given VQ: E[d(X, b(-y(X)))]. In general, the design of a VQ
involves a trade-off between the conflicting desires of low average code rate (good compression)
and low distortion (good fidelity). In all but the simplest cases, VQ design entails the use of a
training set £ of vector samples from X since one usually has no other access to the underlying
probability distributions. The fact that the decoder can be optimized with respect to a fixed
encoder and vice versa is a key tool in VQ design customarily referred to as the generalized
Lloyd algorithm [13]. Thus, three main ingredients are necessary to efficiently design a vector
quantizer: a good distortion measure, a tractable formula for the generalized centroid induced
by this measure, and a code vector initialization procedure. A significant proportion of the
computation time of the generalized Lloyd VQ design algorithm is spent searching through F
for the code symbol F* = 6(X) which minimizes the distortion d(X, F) for the training sample
X. Implementations of the basic algorithm in which the search is exhaustive are called full-
search. In many VQ systems, the time overhead associated with this search is too costly. One
very successful approach to avoiding the costs of full-search VQ at the expense of an increase in
average rate is the tree-structured vector quantizer (TSVQ); we confine this discussion to the
binary-tree case.

Most recently, variable depth TSVQs have been studied in which initially a large tree is
grown according to a "greedy" algorithm and then pruned back in an optimal fashion to reduce
the average rate or depth of the tree. However, this tactic can be augmented with a pruning
phase which searches for a subtree of the large original tree having an acceptable distortion-rate
trade-off. Such a VQ is called a pruned TSVQ (PTSVQ). Here, by pruned subtree of a given
tree we refer to one that shares the same root node. Because any tree T has a finite number
of such pruned subtrees, one can perform an exhaustive search for the subtree which achieves
a best distortion-rate performance. However, by generalizing results from the optimal design of
classification trees [25], Chou et al. [26] have shown how to efficiently design PTSVQs.

An important recent development [26] is that classification trees (CT) can be understood in
a vector quantization framework by considering the communication model in which one views
the unknown class C as a probabilistic source generating the "input" vector X, which in turn
is corrupted by channel noise. A classification tree -r then takes this observation, "encodes" it,
and then "decodes" the class decision C*,

C* = 6(F*) = 6(Qy(X)) = 6('y(((C))), (32)

as shown in Fig. 10.

random distortion class
channel encoder decoder

C X F A

input observed vector class
classes vectors codes decisions

Fig. 10 - Modified VQ/CT diagram
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Here of course, the reproduction alphabet of class decisions A is precisely the set of class labels
C. In this diagram, the r(.) = 6(Qy(.)) represents the tree classifier. Since we wish to minimize
the probability of misclassification,

Pr{C r(X)} =E[1{C5'r(X)}]
= E[E[ 1{C r(X)} X]], (33)

we may define the so-called modified distortion measure dM(x, c) = Pr{ C : c X = x } on
X x C and therefore study tree classifiers in the context of information theory, and in particular
distortion-rate bounds and vector quantization. Conversely, new techniques from the theory of
decision trees can be used to design vector quantizers. In fact, an optimal pruning algorithm
recently developed for classification trees, the generalized Breiman, Friedman, Olshen and Stone
(BFOS) algorithm [26], which removes nodes in an optimal manner, represents the first funda-
mentally new VQ design algorithm since the generalized Lloyd algorithm [13] and Kohonen's
Learning Vector Quantization [5].

VQ, in addition, is a clustering algorithm. Indeed the codewords, represented by the cen-
troids, can be thought of as representatives of the equivalence class represented by each cell of
the VQ (each Voronoi cell). It is in this sense that we use VQ in our approach to the problem
of hierarchical representations of ship radar returns.

Of particular interest is tree structured vector quantization (TSVQ), which provides log-
arithmic (in the number of data) search time vs linear (in the number of data) search time
provided by full search VQ. TSVQ is a special case of hierarchical VQ [13]. TSVQ is one of the
most effective and widely used techniques for reducing the search complexity in VQ. In TSVQ,
the search is performed in stages. In each stage, a substantial subset of candidate Voronoi cells
is eliminated from consideration by a relatively small number of operations. In an m - ary tree
search with a balanced tree, the input data vector is compared with m predesigned Voronoi
vectors at each stage or node of the tree. The nearest (minimum distortion) Voronoi vector
determines which of m paths through the tree to select to reach the next stage of testing. At
each stage, the number of candidate Voronoi vectors is reduced to 1/m of the previous set of
candidates. Such a tree-structured search is a special case of a classification tree or decision tree
[25]. When m = 2, we have a binary tree.

A useful method for designing the tree structure is based on applying the Linde-Buzo-Gray
(LBG) algorithm [13] to successive stages by using a training set. We have used a "greedy"
variant of this method [27]. More precisely, our algorithm splits the cell that contributes the
largest portion of the current overall distortion.

5.2 A TSVQ Conforming with a Wavelet Multiresolution Representation

This section describes the algorithm that implements our overall approach. We first perform
a multiresolution wavelet representation of the radar pulses, based on the selection of a mother
wavelet, as described in Section 4.2. This allows us to consider each pulse reconstructed at
different resolutions Sf, Sf,..., so f. We then proceed by splitting the signal space at
various resolutions in cells, as shown in Fig. 11.

The details of the approach and the resulting algorithm follow. First, a multiresolution
representation of the data vectors (sampled radar pulses) is made, resulting in each data vec-
tor being represented in a number of resolutions. The data vector space (signal space) is then
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* < Resolution 3

! ~~~~~~~~~Resolution 2

- I

i Resolution I

Fig. 11 -Illustrating a multiresolution TSVQ by
splitting Voronoi cells based on different
resolution data

partitioned into cells, or collections of data vectors which are determined by the repeated ap-
plication of the LBG algorithm. LBG is first applied to the coarsest resolution representation
of the data vectors {Sj f, f E S}. Since it is the coarsest representation, the corresponding
length of the data vectors is the shortest; in our experiments that length was 16 (c.f. Section
4.2). As a result, this clustering is faster than a clustering performed on the much longer fine-
resolution representations of the data vectors. The resultant distortion is determined based on
a mean-squared distance metric, and is computed using the finest resolution representation of
the data vectors. The cell (equivalence class of coarse resolution representations) that is the
greatest contributor to the total average distortion for the entire partition is split in the next
application of LBG. A new Voronoi vector is found near the Voronoi vector for the cell to be
split and is added to the Voronoi vectors previously used for LBG. LBG is then applied to the
entire population of data vectors, again using the coarsest representation of each vector. These
steps are repeated until the percentage reduction in distortion for the entire population falls
below a predetermined threshold. The partition in the coarsest resolution is then fixed, and
further partitioning continues by splitting the cells already obtained based on finer resolution
representations of the data vectors in the cell. The algorithm then iterates through the following
steps until the allotted number of cells have been allocated, or until total average distortion has
been reduced to a requisite level:

(i) The next cell chosen for splitting is the one, among the current terminal cells (nodes),
which is the greatest contributor to the total average distortion for the entire population
of data vectors. Distortion is computed always using the finest resolution representation
of the data vectors.
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(ii) If that cell (chosen for further splitting in step (i)) belongs to a subpartition which has
been fixed, it is split using the finer resolution representations of the data vectors in the
cell. If it belongs to a subpartition which is not fixed already, it is split by the addition
of a Voronoi vector and the application of LBG to the entire subpartition using the same
resolution representation of the data vectors in the subpartition.

(iii) If the percentage improvement in distortion for the subpartition to which the cell belongs
falls below a threshold, the subpartition is fixed and further subdivision of the subpartition
is allowed to continue, only using finer resolution representations of the data vectors.

Each new layer in the tree corresponds exactly to partitions based on the next finer resolution
data representation than the previous layer. In the context of describing the hierarchy of the
partitioning of the given signal set S (the ship radar pulses) we will often use resolution indices
to determine the layer in the tree. Thus, we may refer to the signals that are contained in a
particular element of a partition in the rth layer of the tree as the signals of a given cell at
resolution m, where m = J - r. Thus, layer 0 in the tree corresponds to the coarser resolution
J*; in our experiments J = 3.

Note that the algorithm splits the population of a cell differently depending on whether
or not the cell belongs to a subpartition that has been fixed. If its subpartition has not been
fixed, then upon splitting, a new Voronoi vector is chosen, close to the Voronoi vector (centroid)
for that cell, and LBG is applied to the population of that cell, and all of the other cells in
its subpartition. If its subpartition has been fixed, LBG is applied only to the population of
that cell, but finer resolution representations of the data vectors are used. To maintain this
distinction, in the description of the algorithm given below, we must often refer to partitions
and subpartitions. We simply note here that once a subpartition is fixed, it contains the same
population as some cell at the next finer resolution. For example, once fixed, subpartition s of
cell c at resolution m (layer J - m) would contain the same data vectors as cell s at resolution
m-1.

Given a set of data vectors S at fine resolution 0, a multiresolution representation of those
observations {Sof, Sf, * * , S f, f E S}, and a tree T describing the hierarchy in the
partitioning of the observation space, we define:

r tree layer (0 is the top layer, J* the deepest layer)
rn resolution (J* is coarsest, m is coarser than m - 1)
SMA data vector number i at resolution m
Orc a set of ordered pairs of indices describing the contents and the subpartitioning

of cell c at tree layer r. There are as many ordered pairs as there are
data vectors in cell c at resolution J* - r. The first index of each pair
identifies the data vector. The second index identifies the
subpartition of cell c where this vector belongs.

°rcs the set of data vectors in cell c, subcell s, at resolution J* -r
Vrc the set of Voronoi vectors in the partition described by rc
Vrcs the Voronoi vector for subcell s of cell c, at resolution J* -r
1 the set of all leaf nodes in T that may be split
k current number of leaf nodes in the tree
K maximum number of leaf nodes allowed
0 finest resolution scale
M total number of observations (data vectors)
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The algorithm proceeds as follows:

main
m - J*; r+ 0; c+- 0; s +- 0
Orc + (1,0),(2,0),..,(M,0)

vrc i- centroid(or,, J* -r)
T trc
I - {trc}
lbg(Orc, Vrc, J - r)
z +- y D(Orc, 0)
splitCell(r, c, s)
k 2

if(y - D(orc, 0) < e)frc 1

else frc 0

while ({k < K} U {z > 6})

(r, c, s) - arg ma(rcs):n(orcr)Ej d(Orcs, 0)

y + D(Orc, 0)

if({frc = 1} n {r < J*}) expandCell(r, c, s)

if({frc = 1} nf {r = M}) remLeaf(r, c, s)

if(fTC = 0)

splitCell(r, c, s)
if(y - D(Orc, 0) < e) frc 1

else frc + 0

end if
z = totD(

Coarsest data, first cell, first subpartition.
All data vectors are put in one subpartition.
Initialize Voronoi vector to centroid of data.
Initialize tree to single node.
Initialize leaf list to single node.
Apply LBG to the subpartition.
Store distortion for the subpartition.
Split the subpartition into two subcells.
Store the number of leaf nodes.
If distortion is not much improved,
fix subpartition.
Otherwise, allow further splitting
of subpartitions.
Until maximum number of leaves
or distortion lower bound is reached

Find the leaf (cell) which contributes
the most to total distortion
(measured at the finest resolution).
Store the distortion for that cell's
parent cell, using the parent cell's
(fixed) subpartitions.
If subpartition is fixed and finer
resolutions are available, then
expand subpartition at next finer
resolution.
If subpartition is fixed at the finest
resolution, then remove this cell
from the list of leaf nodes.
If subpartition is not fixed,
Split the subcell via LBG.
If distortion is not much improved,
fix subpartition.
Otherwise, allow further splitting
of subpartitions.

Compute the distortion for the
entire tree

end while
exit
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splitCell(r, c, s):
m ÷- - r; i +- arg minj:(i,)Oc ISmf - VrcS I 

addCell(r, c, s)
addLeaf(r, c, )
k +-k + 1

VrC + Smf,
VrC - vrc U rcs

lbg(orc, rc, J - r)
return

expandCell(r, c, s):

addCell (f, s, s)

addLeaf(f, s, s)
remLeaf(r, c, s)
°rs *{ (i, S) : (i, s) E rel
vtos +- centroid (of ,,)
VrS +-VrS§

lbg (of, vf,, f)
return

addCell(r, c, s):

addLeaf(r, c, s):

remLeaf(r, c, s):

centroid(orc, r):

lbg(orc, vrc, m):

Find the data vector
closest to the Voronoi vector.
Make a new subpartition.

Make the found data vector
a Voronoi vector.
Apply LBG to the subpartitions.

Create a new cell on the next tree layer
having the same data vectors as
those in the subpartition s.

Initialize the Voronoi vectors for this new cell.

Creates a new subpartition s at resolution J* - r, cell c,
and adds a node to the tree to correspond to it.

Adds this node to the list of leaf nodes ready for splitting
or expansion.

Removes this node from the list of leaf nodes ready
for splitting or expansion.

Returns the centroid of the data vector in rc,
computed at resolution m- = - r.

Applies the Linde-Buzo-Gray algorithm to data in rc,
using Voronoi Vectors vrc, at resolution m = - r.

Defines the tree node that corresponds to rcs.
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d(orcs, 0): Computes the distortion of all data vectors in subpartition s,
cell c and resolution J* - r, weighted by the relative frequency Prcs.
All computations are done at the finest resolution.
Specifically, letting
nrcs = the number of data vectors in subcell s, cell c, resolution J* -r,

Prcs = nrcs/M
vr~,so is the Voronoi vector for all data vectors in
subpartition s, cell c, resolution J* - r, but recomputed with
finest resolution data, we have
d(Orcs ) = prcs (1/nrcs) ZEOrcs I vrcso -S Sf 1 12.

D(Orc, 0): Computes the distortion of all data vectors in cell c,
resolution J* - r, weighted by the relative frequency of the cell,
using finest resolution data.
D(Orc, O) = E:(i)Eorc d(orcs, 0)

totD(: Computes the distortion for the entire tree, using finest
resolution data.
totD( = Er,c,s:n(r,c,s)E{terminal nodes} d(Orcs, 0)

We have constructed a hierarchical organization of the data as a tree. The tree conforms
with the multiresolution data representations. It is clear that the search of the hierarchically
organized database will be much faster than the search of the overall database. The question is
this: how much performance did we sacrifice? To answer this question, we compared the results
of the wavelet-TSVQ algorithm with those of straight VQ applied to the finest resolution data,
by means of the total (operational) distortion vs number of cells performance curve, as well as vs
the entropy of the final partition. The number of cells is the number of terminal nodes (cells).
The entropy of the partition is E = - r,c,s:n(r,c,s)E{terminal nodes} Prcs logPrcs- Since entropy
is a measure of randomness of the population of a partition, the larger E is, the better the
clustering performed; i.e., the cells of the partition contain well-matched pulses. As the typical
results depicted in Figs. 12, 13, 14, and 15 show the performance achieved by our wavelet-TSVQ
algorithm is indeed excellent. Figures 12 and 13 describe the results on the data set S1, where
the aspect angle was varied every 0.050. Figures 14 and 15 describe the results on the data set
S2, where the aspect angle was varied every 45°. The mother wavelet used in these results was
the Haar wavelet.

6. EXPERIMENTS, INTERPRETATIONS, AND CONCLUSIONS

In this section, we examine carefully the trees constructed by our method and show that our
wavelet-TSVQ indeed achieves an indexing scheme for ship targets reminiscent of that obtained
by varying the aspect angle and the pulsewidth. This is an indexing scheme because it provides a
hierarchical organization of the multi-viewpoint (aspect and elevation), multi-pulsewidth radar
data from a ship using significant clusterings in the 6, a, parameter space. We also examine
very carefully the resulting cells to discover characteristics of the pulse upon which the clustering
was based in an essential way.
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Fig. 12 - Performance comparison (entropy) between VQ on fine scale
pulses vs wavelet-TSVQ on multiresolution pulses; S data set
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Fig. 13 -Performance comparison (number of leaf nodes) between VQ on fine
scale pulses vs wavelet TSVQ on multiresolution pulses, Sl data set
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Fig. 14 - Performance comparison (entropy) between VQ on fine scale
pulses vs wavelet-TSVQ on multiresolution pulses; S2 data set
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Fig. 15 - Performance comparison (number of leaf nodes) between VQ on fine
scale pulses vs wavelet-TSVQ on multiresolution pulses; S2 data set
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Figure 16 shows the tree constructed by our method for the data set S1. We show the cells
that the algorithm created at each resolution (tree layer) as well as the percentages of pulses
that were clustered in each cell. This tree has 30 final cells, and achieved average distortion of
61748, and partition entropy of 3.37. Its performance was excellent in comparison to full VQ
search. The notation we have used to designate the cells is as follows: cell m,k denotes the cell
number k at resolution m.

/ \~~~~~~~a
Data Set

Resolution 3 0 c 3,3 02 c 3,2 (s c3,1
(coarsest)

Resolution 2 C \2> g c c25

Resolution 1 _ /

(003 0.07 006 0 014 0.07 00 60.05
1,4 cl8 ci, cl1 ci 1, 3 Cl5 c, c.9AI

Resolution 0 (G 0.03l00(finest) -

cO,I c0,2 c0,3 c0,4

Fig. 16 - Tree data organization constructed by the wavelet-TSVQ algorithm on the S data set

Figures 17, 18, 19, and 20 show the pulses in cells of this tree. We see that at the coarse
level, the wavelet-TSVQ algorithm clusters the radar pulses according to aspect. As we move
to finer resolutions, the pulses cluster according to the location of their maxima. These maxima
correspond to significant scatterers. This is a very nice and natural indexing of the radar returns
from a ship. What is an important contribution is that we have developed a systematic, auto-
matic method for constructing this indexing, and we have provided its quantitative parameters
and performance measures. To better realize the efficiency of this method, it suffices to compare
it with conventional methods of indexing radar pulses based on small aspect-elevation cells. The
method also reflects the accuracy limitations of the sensor, in the sense that it does not attempt
to separate the pulses more than the sensor noise will permit.

Figure 21 shows the tree constructed by our method for the data set S2. We show the cells
that the algorithm created at each resolution (tree layer) as well as the percentages of pulses
that were clustered in each cell. This tree has 11 final cells, and achieved average distortion
of 24,463, and partition entropy of 2.24. Its performance was excellent compared to a full VQ
search. The notation we have used to designate the cells is as follows: cell m,k denotes the cell
number k at resolution m.
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Resolution 3 0.25 c 3,2 (0.75) c 3,1
(coarsest)

Resolution 2 (EX)

Resolution 1 (12 (2) 0.

Resolution 0 0.0 0.05
(finest)

CO,1 cO,2 c0,3

Fig. 21 - Tree data organization construction by the wavelet-TSVQ algorithm on the S2 data set

Figures 22, 23, 24, and 25 show the pulses in cells of this tree. We see that at the coarse
level, the wavelet-TSVQ algorithm clusters the radar pulses according to aspect. As we move
to finer resolutions, the pulses again cluster according to the location of their maxima. We also
observe that the clustering is sharper than with the data set S1, because we have less variability
in aspect.

To summarize, we have discovered in addition an extremely efficient indexing scheme for high
range-resolution radar data, which is akin to the aspect graph widely used in computer vision-
based object recognition [281. Indeed, as we show in Fig. 26, a multiresolution aspect graph for
radar ship data results naturally from our methodology. Here the concentric spheres designate
different resolutions. The cells on these spheres illustrate aspect equivalence classes for the radar
signals (returned pulses). These equivalence classes mean that the pulses in these clusters are
difficult to discriminate due to their similarity. As we move inwards in this graph, the outside
cells split because we can now get further characteristics of the target based on finer resolution
information on the pulse. These characteristics are related to dominant scattering centers. To
construct the aspect graph, we select as the representative from each equivalence class the radar
pulse corresponding to the centroid of the corresponding Voronoi cell. The resulting graph has
geometrically the appearance of the trees depicted in Figs. 16 and 21. The nodes (cells in these
figures) correspond to aspect-elevation neighborhoods for which the corresponding returned
pulses are too similar to be separated. A "canonical" pulse that corresponds to the centroid is
associated to each node. The nodes are given for various resolutions. Transitions from one node
to the other indicate either a change in aspect-elevation or in resolution of adequate magnitude
to cause changes in the pulse that can be discriminated by the sensor. In the present case, these
changes are due to grouping (or ungrouping) of scatterers, or scatterer visibility (or nonvisibility)
from the particular aspect-elevation cell. It is clear from this discussion that the aspect graph
is a reduced but accurate model of the target and can be used to guide the automatic target
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Fig. 22- Layer 0, resolution 3 cells in the tree of Fig. 21
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Fig. 26 - Illustrating a multiresolution aspect graph for radar ship data

recognition (ATR) process in model-based ATR. In such an application, the received pulse is
compared with the "canonical" pulse at each node sequentially as the ATR process evolves. The
aspect graph directs the search in an efficient and speedy manner; it is well known that tree-
based search is logarithmic in the number of terminal nodes, which is a substantial reduction
from conventional methods.

These constructs are extremely useful in ATR, ship classification, and in the retrieval of data
from large radar pulse databases. The techniques are generic, however, and can be applied to
a great variety of signal classification and hierarchical organization problems. We shall pursue
several of these developments in future research.
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